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Note 

A Useful Device for Certain Boundary-Value Problems 

As originally conceived, the method of invariant imbedding was a technique 
for determining the “missing” initial conditions at one endpoint of the interval 
underlying a linear two-point boundary-value problem. The solution of the 
boundary-value problem, if desired, was to be obtained by solving the resulting 
initial-value problem. A number of recent works [l-6] have appeared which have 
in common the basic idea of somehow solving the boundary-value problem 
entirely within the framework of invariant imbedding. The purpose of this note 
is to show that a straightforward application of the method of Scott [3,6] on a 
digital computer can, under certain circumstances, lead to large cancellation 
errors, and to describe a modification of this method which seems to aid in over- 
coming these difficulties. 

We consider the problem 

u’(z) = a(z) 44 + b(z) u(z) + s+(z), 

-u’(z) = c(z) u(z) + d(z) u(z) + s-(z), 

u(0) = 0, u(x) = a. 

The solution is given by 

(1) 

(2) 

(3) 

44 = qz) J- {T(x) 01 + [4x) - e&)1>> (4) 

44 = R(z) u(z) + e,(z), (5) 

where R, T, e, and el are determined by the initial-value problem 

R’(z) = W + b(z) + WI R(z) + c(z) RW, (6) 

T’(z) = W + 44 R(z)1 TO, (7) 

e,‘(z) = b(z) + 44 R(z)1 e,(z) + R(z) s-(z) + s+(z), (8) 

et’(z) = [c(z) e,(z) + SW T(z), (9 
R(0) = e,.(O) = et(O) = 0, (10) 

T(0) = 1. (11) 
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Remark. That (4~(11) define a solution of (l)-(3) can be directly verified. 
Background, motivation, an extension to systems, and an extension to more 
general boundary conditions are given in [6]. 

It is generally believed that an advantage accrues to invariant imbedding, 
relative to a straightforward application of the method of superposition, because 
initial-value problems for the system (6)-(g) can be solved sumerically with more 
accuracy than can such problems for the original system (l)-(2). However, granting 
this point, there remains the possibility, in any digital implementation, of large 
errors due to cancellations in the additions occurring in (4) and (5). 

In order to illustrate this difficulty, Table I displays numerical results for the 
problem 

u’ = v + 1, (12) 

v’ = u, (13) 

u(0) = 0, v(20) = 1. (14) 

The unmodified method of (Scott’s version of) invariant imbedding obviously 
produces a rather poor approximation to the solution, but even so it is considerably 
better than the large negative solution produced by the method of superposition 
when it was applied to this unstable system. The major source of error in the 
unmodified invariant imbedding algorithm is roundoff error occurring in the 
subtraction et(x) - er(z) in (4). For example, the exact value of et(z) is (1 /cash z) - 1 
thus e,(x) = er(20) = -1 + 1.0306(-IO), e,(18) = -1 + 7.61499(-g). Thus an 
integration scheme would need to have eight places of accuracy, which is a great 
deal to ask, in order to give even one significant figure in the direct computation 

TABLE I 

u(z) for (12)-(14) As Given By Various Techniques 

Invariant Successive 
imbedding starts 

z Exact (unmodified) (z* = Z) 

5 6.1(-7) 4.9(-4) 4.3(-5) 
10 o.OcN9 0.0359 0.00014 
14 0.0050 0.6441 0.0050 
16 0.0366 1.0183 0.0367 
18 0.2707 1.1353 0.2706 
19 0.7358 1.3677 0.7354 
20 2.OoOo 2.OOoO 2.OoOo 
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of e&(20) - e,(lS). In fact, even the exact solution of the differential equations 
would yield a nonsensical final answer if the subtraction eL(x) - et(z) were carried 
out in fewer than eight digits of precision. (The small number cl(x) - cl(z) gives 
a significant contribution to the final answer because it is divided by 
T(z) = l/cash z, which is small of the same order.) 

In the usual procedure for solving (l)-(3) via (4)-(1 l), the initial-value problem 
(6)-( 11) is numerically integrated once from z = 0 to z = x. During this integration 
there are stored the values of R, T, e, and e, corresponding to those z at which 
the values of u and ZI are desired. (If this storage is undesirable, then it can be 
obviated at the cost of a second numerical integration of (6)-(11) from z = 0 to 
z = x.) In an attempt to minimize the effect of the cancellation error associated 
with the calculation of et(x) - es(z) in (4), we recommend the following modifica- 
tion of this procedure. 

Select values 0 = z0 < z1 < ... < z, = x such that max(zi - ziml) is on the 
order of a characteristic length for the system (l)-(2). During the numerical 
integration substitute the initial-value problems 

Y,‘(Z) = [c(z) e,(z) + 641 WY Zi-1 < Z d Zi 3 (15) 

J&i-J = 0, (16) 

for Eq. (9), but integrate the remaining Eqs. of (6)-(11) as previously, with u,(z) 
being stored rather than e,(z). After the integration compute cl(x) - et(z) at the 
desired values of z by the formula 

44 - 4.4 = biC4 - vi(z)1 + yi+dzi+J + ... + Y&J, 
Zi-1 < Z < Zi . (17) 

For ease of reference we shall denote this procedure as the method of successive 
starts. The results in Table I show that it may yield greatly increased accuracy, 
and it seems in no case to decrease the accuracy. 

In conclusion, we would like to make the following remarks. 

Remark 1. All numerical integrations for the example were performed using 
a Runge-Kutta integration scheme with a fixed step size of 0.2. This step size 
was selected as near optimal after some experimentation. For this example the 
use of a more accurate integration scheme would probably increase the accuracy 
of the final answer only marginally; however, there are other problems for which 
a more accurate integration scheme might be imperative. The computations were 
done in single precision on an IBM System\360. 

Remark 2. The most important source of roundoff errors in (3)-(4) seems to 
be in the subtraction eZ(x) - et(z) in (4). Although errors are certainly possible 
in forming T(x)a: + [et(x) - e,(z)], these will be important only at those z such 
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that the effect of the boundary conditions, represented by T(x) a/T(z), is equal 
in magnitude, but opposite in direction, to the effect of the inhomogeneous terms, 
represented by [e&x) - el(z)]/7’(z). At such z the value of v(z), both actual and 
as computed from (4), will probably be small relative to its maximum value over 
all z, and consequently this cancellation error will not significantly affect accuracy 
relative to this maximum value. A similar argument holds for the addition in (5). 
(Incidentally, roundoff error in this operation is primarily responsible for the 
relative inaccuracy at z = 5.) We conclude that even with the successive starts 
modifications, this version of invariant imbedding can only be expected to yield 
results which are accurate relative to the maximum value, over z, of the solution. 
This criterion of accuracy will be acceptable for most problems. 

Remark 3. From (9) it appears that, for example, the inaccuracy in forming 
et(x) - cl(z) is likely to be particularly troublesome when z is near x and T(z) 
is a generally decreasing function having a value several orders of magnitude 
below unity at z = x. This type of behavior for T(z) is not too uncommon, since 
T(z) will vary like e-ZlL in many interesting situations, where L is a characteristic 
length for the problem. [For example, L may be taken as the reciprocal of the 
maximum over 0 < z < x of some relevant norm for the given matrix defined 
by the right side of (l)-(2).] In such a situation this cancellation error is likely 
to be particularly severe for “long” problems in which the problem length x is 
several times larger than L, and it will then be imperative that some device, such 
as successive starts, be adopted to avoid this source of error. 

Remark 4. The difficulty associated with computation of cl(x) - eL(z) does 
not arise for homogeneous problems, as e, and e, are both identically zero for 
such problems. It seems likely that a corresponding difficulty will appear in some 
of the methods described in Refs. [l-5], but that this was not observed because 
either the development or the computational examples were limited to homo- 
geneous problems. 
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